Calindol, a positive allosteric modulator of the human Ca2+ receptor, activates an extracellular ligand-binding domain-deleted rhodopsin-like seven-transmembrane structure in the absence of Ca2+

50Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

The extracellular calcium-sensing human Ca2+ receptor (hCaR),2 a member of the family-3 G-protein-coupled receptors (GPCR) possesses a large amino-terminal extracellular ligand-binding domain (ECD) in addition to a seven-transmembrane helical domain (7TMD) characteristic of all GPCRs. Two calcimimetic allosteric modulators, NPS R-568 and Calindol ((R)-2-{1-(1-naphthyl)ethylaminom-ethyl}indole), that bind the 7TMD of the hCaR have been reported to potentiate Ca2+ activation without independently activating the wild type receptor. Because agonists activate rhodopsin-like family-1 GPCRs by binding within the 7TMD, we examined the ability of Calindol, a novel chemically distinct calcimimetic, to activate a Ca2+ receptor construct (T903-Rhoc) in which the ECD and carboxyl-terminal tail have been deleted to produce a rhodopsin-like 7TMD. Here we report that although Calindol has little or no agonist activity in the absence of extracellular Ca2+ for the ECD-containing wild type or carboxyl-terminal deleted receptors, it acts as a strong agonist of the T903-Rhoc. In addition, Ca2+ alone displays little or no agonist activity for the hCaR 7TMD, but potentiates the activation by Calindol. We confirm that the activation of T903-Rhoc by Calindol is truly Ca2+ independent using in vitro reconstitution with purified Gq. These findings demonstrate distinct allosteric linkages between Ca2+ site(s) in the ECD and 7TMD and the 7TMD site(s) for calcimimetics.

Cite

CITATION STYLE

APA

Ray, K., Tisdale, J., Dodd, R. H., Dauban, P., Ruat, M., & Northup, J. K. (2005). Calindol, a positive allosteric modulator of the human Ca2+ receptor, activates an extracellular ligand-binding domain-deleted rhodopsin-like seven-transmembrane structure in the absence of Ca2+. Journal of Biological Chemistry, 280(44), 37013–37020. https://doi.org/10.1074/jbc.M506681200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free