Natural variation in growth and leaf ion homeostasis in response to salinity stress in Panicum hallii

2Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Soil salinity can negatively impact plants growth, development and fitness. Natural plant populations restricted to coastal environments may evolve in response to saline habitats and therefore provide insights into the process of salinity adaptation. We investigated the growth and physiological responses of coastal and inland populations of Panicum hallii to experimental salinity treatments. Coastal genotypes demonstrated less growth reduction and superior ion homeostasis compared to the inland genotypes in response to saline conditions, supporting a hypothesis of local adaptation. We identified several QTL associated with the plasticity of belowground biomass, leaf sodium and potassium content, and their ratio which underscores the genetic variation present in this species for salinity responses. Genome-wide transcriptome analysis in leaf and root tissue revealed tissue specific overexpression of genes including several cation transporters in the coastal genotype. These transporters mediate sodium ion compartmentalization and potassium ion retention and thus suggests that maintenance of ionic homeostasis of the coastal genotypes might be due to the regulation of these ion transporters. These findings contribute to our understanding of the genetics and molecular mechanisms of salinity adaptation in natural populations, and widens the scope for genetic manipulation of these candidate genes to design plants more resilient to climate change.

Cite

CITATION STYLE

APA

Haque, T., Bhaskara, G. B., Yin, J., Bonnette, J., & Juenger, T. E. (2022). Natural variation in growth and leaf ion homeostasis in response to salinity stress in Panicum hallii. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1019169

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free