Nanoscaled carborane ruthenium(II)-arene complex inducing lung cancer cells apoptosis

25Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The new ruthenium(II)-arene complex, which bearing a carborane unit, ruthenium and ferrocenyl functional groups, has a novel versatile synthetic chemistry and unique properties of the respective material at the nanoscale level. The ruthenium(II)-arene complex shows significant cytotoxicity to cancer cells and tumor-inhibiting properties. However, ruthenium(II)-arene complex of mechanism of anticancer activity are scarcely explored. Therefore, it is necessary to explore ruthenium(II)-arene complex mechanism of anticancer activity for application in this area.Results: In this study, the ruthenium(II)-arene complex could significantly induce apoptosis in human lung cancer HCC827 cell line. At the concentration range of 5 μM-100 μM, ruthenium(II)-arene complex had obvious cell cytotoxicity effect on HCC827 cells with IC50values ranging 19.6 ± 5.3 μM. Additionally, our observations demonstrate that the ruthenium(II)-arene complex can readily induce apoptosis in HCC827 cells, as evidenced by Annexin-V-FITC, nuclear fragmentation as well as DNA fragmentation. Treatment of HCC827 cells with the ruthenium(II)-arene complex resulted in dose-dependent cell apoptosis as indicated by high cleaved Caspase-8,9 ratio. Besides ruthenium(II)-arene complex caused a rapid induction of cleaved Caspase-3 activity and stimulated proteolytic cleavage of poly-(ADP-ribose) polymerase (PARP) in vitro and in vivo.Conclusion: In this study, the ruthenium(II)-arene complex could significantly induce apoptosis in human lung cancer HCC827 cell line. Treatment of HCC827 cells with the ruthenium(II)-arene complex resulted in dose-dependent cell apoptosis as indicated by high cleaved Caspase-8,9 ratio. Besides ruthenium(II)-arene complex caused a rapid induction of cleaved Caspase-3 activity and stimulated proteolytic cleavage of poly-(ADP-ribose) polymerase (PARP) in vitro and in vivo. Our results suggest that ruthenium(II)-arene complex could be a candidate for further evaluation as a chemotherapeutic agent for human cancers, especially lung cancer. © 2011 Zhang et al; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Zhang, G., Wu, C., Ye, H., Yan, H., & Wang, X. (2011). Nanoscaled carborane ruthenium(II)-arene complex inducing lung cancer cells apoptosis. Journal of Nanobiotechnology, 9. https://doi.org/10.1186/1477-3155-9-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free