Manipulating the rotational as well as the translational degrees of freedom of rigid bodies has been a crucial ingredient in diverse areas, from optically controlled micro-robots, navigation, and precision measurements at macroscale to artificial and biological Brownian motors at nanoscale. Here, we demonstrate feedback cooling of all the angular motions of a near-spherical neutral nanoparticle with all the translational motions feedback-cooled to near the ground state. The occupation numbers of the three translational motions are 6 ± 1, 6 ± 1, and 0.69 ± 0.18. A tight, anisotropic optical confinement allows us to clearly observe three angular oscillations and to identify the ratio of two radii to the longest radius with a precision of 0.08 %. We develop a thermometry for three angular oscillations and realize feedback cooling of them to temperatures of lower than 0.03 K by electrically controlling the electric dipole moment of the nanoparticle.
CITATION STYLE
Kamba, M., Shimizu, R., & Aikawa, K. (2023). Nanoscale feedback control of six degrees of freedom of a near-sphere. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-43745-7
Mendeley helps you to discover research relevant for your work.