Environmental context Recent developments in nanotechnology have focussed towards innovation and usage of multifunctional and superior hybrid nanomaterials. Possible exposure of these novel nanohybrids can lead to unpredicted environmental fate, transport, transformation and toxicity scenarios. Environmentally relevant emerging properties and potential environmental implications of these newer materials need to be systematically studied to prevent harmful effects towards the aquatic environment and ecology. Abstract Nanomaterial synthesis and modification for applications have progressed to a great extent in the last decades. Manipulation of the physicochemical properties of a material at the nanoscale has been extensively performed to produce materials for novel applications. Controlling the size, shape, surface functionality, etc. has been key to successful implementation of nanomaterials in multidimensional usage for electronics, optics, biomedicine, drug delivery and green fuel technology. Recently, a focus has been on the conjugation of two or more nanomaterials to achieve increased multifunctionality as well as creating opportunities for next generation materials with enhanced performance. With incremental production and potential usage of such nanohybrids come the concerns about their ecological and environmental effects, which will be dictated by their not-yet-understood physicochemical properties. While environmental implication studies concerning the single materials are yet to give an integrated mechanistic understanding and predictability of their environmental fate and transport, the importance of studying the novel nanohybrids with their multi-dimensional and complex behaviour in environmental and biological exposure systems are immense. This article critically reviews the literature of nanohybrids and identifies potential environmental uncertainties of these emerging 'horizon materials'.
CITATION STYLE
Aich, N., Plazas-Tuttle, J., Lead, J. R., & Saleh, N. B. (2014). A critical review of nanohybrids: Synthesis, applications and environmental implications. Environmental Chemistry. CSIRO. https://doi.org/10.1071/EN14127
Mendeley helps you to discover research relevant for your work.