In this study, a dynamic stochastic resonance (DSR)-based technique in spatial domain has been proposed for the enhancement of dark- and low-contrast images. Stochastic resonance (SR) is a phenomenon in which the performance of a system (low-contrast image) can be improved by addition of noise. However, in the proposed work, the internal noise of an image has been utilised to produce a noise-induced transition of a dark image from a state of low contrast to that of high contrast. DSR is applied in an iterative fashion by correlating the bistable system parameters of a double-well potential with the intensity values of a low-contrast image. Optimum output is ensured by adaptive computation of performance metrics - relative contrast enhancement factor ( F), perceptual quality measures and colour enhancement factor. When compared with the existing enhancement techniques such as adaptive histogram equalisation, gamma correction, single-scale retinex, multi-scale retinex, modified high-pass filtering, edge-preserving multi-scale decomposition and automatic controls of popular imaging tools, the proposed technique gives significant performance in terms of contrast and colour enhancement as well as perceptual quality. Comparison with a spatial domain SR-based technique has also been illustrated.
CITATION STYLE
Chouhan, R., Jha, R. K., & Biswas, P. K. (2013). Enhancement of dark and low‐contrast images using dynamic stochastic resonance. IET Image Processing, 7(2), 174–184. https://doi.org/10.1049/iet-ipr.2012.0114
Mendeley helps you to discover research relevant for your work.