Anti-angiogenesis in cancer therapeutics: the magic bullet

36Citations
Citations of this article
59Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Angiogenesis is the formation of new vascular networks from preexisting ones through the migration and proliferation of differentiated endothelial cells. Available evidence suggests that while antiangiogenic therapy could inhibit tumour growth, the response to these agents is not sustained. The aim of this paper was to review the evidence for anti-angiogenic therapy in cancer therapeutics and the mechanisms and management of tumour resistance to antiangiogenic agents. We also explored the latest advances and challenges in this field. Main body of the abstract: MEDLINE and EMBASE databases were searched for publications on antiangiogenic therapy in cancer therapeutics from 1990 to 2020. Vascular endothelial growth factor (VEGF) is the master effector of the angiogenic response in cancers. Anti-angiogenic agents targeting the VEGF and HIF-α pathways include monoclonal antibodies to VEGF (e.g. bevacizumab), small-molecule tyrosine kinase inhibitors (TKIs) e.g. sorafenib, decoy receptor or VEGF trap e.g. aflibercept and VEGFR2 inhibitors (e.g. ramucirumab). These classes of drugs are vascular targeting which in many ways are advantageous over tumour cell targeting drugs. Their use leads to a reduction in the tumour blood supply and growth of the tumour blood vessels. Tumour resistance and cardiovascular toxicity are important challenges which limit the efficacy and long-term use of anti-angiogenic agents in cancer therapeutics. Tumour resistance can be overcome by dual anti-angiogenic therapy or combination with conventional chemotherapy and immunotherapy. Emerging nanoparticle-based therapy which can silence the expression of HIF-α gene expression by antisense oligonucleotides or miRNAs has been developed. Effective delivery platforms are required for such therapy. Short conclusion: Clinical surveillance is important for the early detection of tumour resistance and treatment failure using reliable biomarkers. It is hoped that the recent interest in mesenchymal cell-based and exosome-based nanoparticle delivery platforms will improve the cellular delivery of newer anti-angiogenics in cancer therapeutics.

Cite

CITATION STYLE

APA

Oguntade, A. S., Al-Amodi, F., Alrumayh, A., Alobaida, M., & Bwalya, M. (2021, December 1). Anti-angiogenesis in cancer therapeutics: the magic bullet. Journal of the Egyptian National Cancer Institute. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1186/s43046-021-00072-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free