A comparative hidden Markov model analysis pipeline identifies proteins characteristic of cereal-infecting fungi

24Citations
Citations of this article
93Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Fungal pathogens cause devastating losses in economically important cereal crops by utilising pathogen proteins to infect host plants. Secreted pathogen proteins are referred to as effectors and have thus far been identified by selecting small, cysteine-rich peptides from the secretome despite increasing evidence that not all effectors share these attributes.Results: We take advantage of the availability of sequenced fungal genomes and present an unbiased method for finding putative pathogen proteins and secreted effectors in a query genome via comparative hidden Markov model analyses followed by unsupervised protein clustering. Our method returns experimentally validated fungal effectors in Stagonospora nodorum and Fusarium oxysporum as well as the N-terminal Y/F/WxC-motif from the barley powdery mildew pathogen. Application to the cereal pathogen Fusarium graminearum reveals a secreted phosphorylcholine phosphatase that is characteristic of hemibiotrophic and necrotrophic cereal pathogens and shares an ancient selection process with bacterial plant pathogens. Three F. graminearum protein clusters are found with an enriched secretion signal. One of these putative effector clusters contains proteins that share a [SG]-P-C-[KR]-P sequence motif in the N-terminal and show features not commonly associated with fungal effectors. This motif is conserved in secreted pathogenic Fusarium proteins and a prime candidate for functional testing.Conclusions: Our pipeline has successfully uncovered conservation patterns, putative effectors and motifs of fungal pathogens that would have been overlooked by existing approaches that identify effectors as small, secreted, cysteine-rich peptides. It can be applied to any pathogenic proteome data, such as microbial pathogen data of plants and other organisms. © 2013 Sperschneider et al.; licensee BioMed Central Ltd.

References Powered by Scopus

Basic local alignment search tool

79096Citations
28456Readers
Get full text

This article is free to access.

Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Sperschneider, J., Gardiner, D. M., Taylor, J. M., Hane, J. K., Singh, K. B., & Manners, J. M. (2013). A comparative hidden Markov model analysis pipeline identifies proteins characteristic of cereal-infecting fungi. BMC Genomics, 14(1). https://doi.org/10.1186/1471-2164-14-807

Readers over time

‘13‘14‘15‘16‘17‘18‘19‘20‘21‘22‘23‘24‘2506121824

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 41

57%

Researcher 25

35%

Professor / Associate Prof. 5

7%

Lecturer / Post doc 1

1%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 56

74%

Biochemistry, Genetics and Molecular Bi... 15

20%

Computer Science 3

4%

Arts and Humanities 2

3%

Save time finding and organizing research with Mendeley

Sign up for free
0