Monte Carlo simulations for the Pierre Auger Observatory using the VO auger grid resources

0Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

The Pierre Auger Observatory, located near Malargüe, Argentina, is the world’s largest cosmic-ray detector. It comprises a 3000 km2 surface detector and 27 fluorescence telescopes, which measure the lateral and longitudinal distributions of the many millions of air-shower particles produced in the interactions initiated by a cosmic ray in the Earth’s atmosphere. The determination of the nature of cosmic rays and studies of the detector performances rely on extensive Monte Carlo simulations describing the physics processes occurring in extensive air showers and the detector responses. The aim of the Monte Carlo simulations task is to produce and provide the Auger Collaboration with reference libraries used in a wide variety of analyses. All multipurpose detector simulations are currently produced in local clusters using Slurm and HTCondor. The bulk of the shower simulations are produced on the grid, via the Virtual Organization auger, using the DIRAC middleware. The job submission is made via python scripts using the DIRAC-API. The Auger site is undergoing a major upgrade, which includes the installation of new types of detectors, demanding increased simulation resources. The novel detection of the radio component of extensive air showers is the most challenging endeavor, requiring dedicated shower simulations with very long computation times, not optimized for the grid production. For data redundancy, the simulations are stored on the Lyon server and the grid Disk Pool Manager and are accessible to the Auger members via iRODS and DIRAC, respectively. The CERN VM-File System is used for software distribution where, soon, the Auger Offline software will also be made available.

References Powered by Scopus

GEANT4 - A simulation toolkit

20552Citations
2814Readers
Get full text
3787Citations
886Readers
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Santos, E., Abreu, P., Aglietta, M., Albury, J. M., Allekotte, I., Almela, A., … Zavrtanik, M. (2022). Monte Carlo simulations for the Pierre Auger Observatory using the VO auger grid resources. In Proceedings of Science (Vol. 395). Sissa Medialab Srl. https://doi.org/10.22323/1.395.0232

Readers over time

‘22‘23‘2401234

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 1

50%

Researcher 1

50%

Readers' Discipline

Tooltip

Arts and Humanities 1

50%

Engineering 1

50%

Save time finding and organizing research with Mendeley

Sign up for free
0