Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae

48Citations
Citations of this article
82Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Although Saccharomyces cerevisiae is the most highly domesticated yeast, strain dependency in biotechnological processes still remains as a common, yet poorly understood phenomenon. To investigate this, the entrance to the aromatic amino acid biosynthetic pathway was compared in four commonly used S. cerevisiae laboratory strains. The strains were engineered to accumulate shikimate by overexpressing a mutant version of the pentafunctional ARO1 enzyme with disrupted activity in the shikimate kinase subunit. Carbon tracing and 13C metabolic flux analysis combined with quantitative PCR, revealed that precursor availability and shikimate production were dramatically different in the four equally engineered strains, which were found to be correlated with the strains’ capacity to deal with protein overexpression burden. By implementing a strain-dependent approach, the genetic platform was reformulated, leading to an increase in yield and titer in all strains. The highest producing strain, INVSc1-SA3, produced 358 mg L−1 of shikimate with a yield of 17.9 mg g−1glucose. These results underline the importance of strain selection in developing biological manufacturing processes, demonstrate the first case of high production of shikimate in yeast, and provide an appropriate platform for strain selection for future production of aromatic compounds. Biotechnol. Bioeng. 2016;113: 2676–2685. © 2016 Wiley Periodicals, Inc.

Cite

CITATION STYLE

APA

Suástegui, M., Guo, W., Feng, X., & Shao, Z. (2016). Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 113(12), 2676–2685. https://doi.org/10.1002/bit.26037

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free