Activator-dependent acetylation of chromatin model systems

0Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Regulatory mechanisms underlying eukaryotic gene expression, and many other DNA metabolic pathways, are tightly coupled to dynamic changes in chromatin architecture in the nucleus. Activation of gene expression generally requires the recruitment of histone acetyltransferases (HATs) to gene promoters by sequence-specific DNA-binding transcriptional activators. HATs often target specific lysines in the core histone amino-terminal "tail" domains (NTDs), which have the potential ability to alter higher order chromatin structure. In order to better characterize the impact targeted histone acetylation has on chromatin structure and function, we have characterized a novel model system derived from the human T-cell lymphoma virus type 1 promoter. Using this system as an example, here we describe the use of a combination of biochemical and biophysical methods to investigate the effect of activator-dependent acetylation on higher order chromatin structure and transcription by RNA polymerase II. © 2012 Springer Science+Business Media, LLC.

Cite

CITATION STYLE

APA

Szerlong, H. J., & Hansen, J. C. (2012). Activator-dependent acetylation of chromatin model systems. Methods in Molecular Biology, 833, 289–310. https://doi.org/10.1007/978-1-61779-477-3_18

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free