Forests are viewed as a potential sink for carbon (C) that might otherwise contribute to climate change. It is unclear, however, how to manage forests with frequent fire regimes to maximize C storage while reducing C emissions from prescribed burns or wildfire. We modeled the effects of eight different fuel treatments on treebased C storage and release over a century, with and without wildfire. Model runs show that, after a century of growth without wildfire, the control stored the most C. However, when wildfire was included in the model, the control had the largest total C emission and largest reduction in live-tree-based C stocks. In model runs including wildfire, the final amount of tree-based C sequestered was most affected by the stand structure initially produced by the different fuel treatments. In wildfire-prone forests, tree-based C stocks were best protected by fuel treatments that produced a low-density stand structure dominated by large, fire-resistant pines. © The Ecological Society of America.
CITATION STYLE
Hurteau, M., & North, M. (2009). Fuel treatment effects on tree-based forest carbon storage and emissions under modeled wildfire scenarios. Frontiers in Ecology and the Environment, 7(8), 409–414. https://doi.org/10.1890/080049
Mendeley helps you to discover research relevant for your work.