It was reported that trypsin-treated β-lactoglobulin (β-LG) had a glucose-lowering effect in the oral glucose tolerance test (OGTT) in mice and a dipeptidyl peptidase-4 (DPP-4) inhibition activity in vitro. However, whether trypsin-treated β-LG improves glucose tolerance by inhibiting DPP-4 in vivo has not yet been examined, and the mechanism of the glucose-lowering effect of trypsin-treated β-LG is thus unclear. Here we investigated the detailed mechanism underlying the glucose tolerance effect of trypsin-treated β-LG. The oral administration of trypsin-treated β-LG significantly decreased the blood glucose concentrations in both the OGTT and an intraperitoneal glucose tolerance test (IPGTT). However, trypsin-treated β-LG did not increase the insulin secretion after glucose loading. Trypsin-treated β-LG potently increased the level of phosphorylated AMP-activated protein kinase (AMPK) in human hepatocellular carcinoma (HepG2) cells and in mice hepatocytes. Moreover, trypsin-treated β-LG significantly enhanced glucose uptake into the HepG2 cells. These results indicate that trypsin-treated β-LG decreases blood glucose levels after glucose loading by upregulating AMPK activation and glucose uptake in the liver, which could contribute to the reduction of postprandial hyperglycemia.
CITATION STYLE
Tsuda, Y., Iwasawa, K., Yokoyama, M., & Yamaguchi, M. (2017). Trypsin-treated β-lactoglobulin improves glucose tolerance in C57BL/6 mice by enhancing AMPK activation and glucose uptake in hepatocytes. Biological and Pharmaceutical Bulletin, 40(11), 1917–1922. https://doi.org/10.1248/bpb.b17-00437
Mendeley helps you to discover research relevant for your work.