During Magnetic Resonance Imaging (MRI), the presence of an implant such as a Deep Brain Stimulation (DBS) lead in a patient's body can pose a significant risk. This is due to the fact that the MR radiofrequency (RF) field can achieve a very high strength around the DBS electrodes. Thus the specific absorption rate (SAR), which is proportional to the square of the magnitude of the RF electric field, can have a very high concentration in the near-field region of the electrodes. The resulting tissue heating can reach dangerous levels. The degree of heating depends on the level of SAR concentration. The effects can be severe, leading to tissue ablation and brain damage, and significant safety concerns arise whenever a patient with an implanted DBS lead is exposed to MR scanning. In this paper, SAR, electric field, and temperature rise distributions have been found around actual DBS electrodes. The magnitude and spatial distribution of the induced temperature rises are found to be a function of the length and structure of the lead device, tissue properties and the MR stimulation parameters.
CITATION STYLE
Mohsin, S. A. (2011). Concentration of the specific absorption rate around deep brain stimulation electrodes during MRI. Progress in Electromagnetics Research, 121, 469–484. https://doi.org/10.2528/PIER11022402
Mendeley helps you to discover research relevant for your work.