Bauxite residue is treated for the recovery of aluminum and sodium by sintering with the addition of soda, metallurgical coke and other reagents such as CaO, MgO and BaO. A thorough thermodynamic analysis using Factsage 7.0™ software was completed together with XRD mineralogy of sinters with different fluxes and reagents additions. Through both thermodynamic interpretation and mineralogical confirmations, it was observed that the type of desilication product in bauxite residue influences the total aluminum recovery through the sintering process and formation of sodium aluminum silicate exists in equilibrium with sodium aluminate, unless silica is consumed by additives (such as CaO, MgO, BaO etc.) forming other more thermodynamically favorable species and liberating alumina. Addition of barium oxide improves the aluminum and sodium recovery to 75% and 94% respectively. Complex sinter product formation that are triggered due to high calcium content in the Greek bauxite residue reduces aluminum recovery efficiency. Optimised and feasible recovery of aluminum and sodium for Greek bauxite residue was proved to be 70% and 85% respectively, when sintered with 50% excess stoichiometric soda. It was observed that stoichiometric carbon addition in inert atmosphere only assisted recovery up to 75% of aluminum and 83% of sodium, though there are benefits gained from pre-reducing iron from hematite for downstream recovery.
CITATION STYLE
Tam, P. W. Y., Panias, D., & Vassiliadou, V. (2019). Sintering optimisation and recovery of aluminum and sodium from greek bauxite residue. Minerals, 9(10). https://doi.org/10.3390/min9100571
Mendeley helps you to discover research relevant for your work.