The genetic analysis of achiasmate segregation in Drosophila melanogaster. III. The wild-type product of the Axs gene is required for the meiotic segregation of achiasmate homologs

16Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

The regular segregation of achiasmate chromosomes in Drosophila melanogaster females is ensured by two distinct segregational systems. The segregation of achiasmate homologs is assured by the maintenance of heterochromatic pairing; while the segregation of heterologous chromosomes is ensured by a separate mechanism that may not require physical association. Axs(D) (Aberrant X segregation) is a dominant mutation that specifically impairs the segregation of achiasmate homologs; heterologous achiasmate segregations are not affected. As a result, achiasmate homologs frequently participate in heterologous segregations at meiosis I. We report the isolation of two intragenic revertants of the Axs(D) mutation (Axs(r2) and Axs(r3)) that exhibit a recessive meiotic phenotype identical to that observed in Axs(D)/Axs(D) females. A third revertant (Axs(τ1)) exhibits no meiotic phenotype as a homozygote, but a meiotic defect is observed in Axs(r1)/Axs(r2) females. Therefore mutations at the Axs(D) locus define a gene necessary and specific for homologous achiasmate segregation during meiosis. We also characterize the interactions of mutations at the Axs locus with two other meiotic mutations (ald and ncd). Finally, we propose a model in which Axs+ is required for the normal separation of paired achiasmate homologs. In the absence of Axs+ function, the homologs are often unable to separate from each other and behave as a single segregational unit that is free to segregate from heterologous chromosomes.

Cite

CITATION STYLE

APA

Whyte, W. L., Irick, H., Arbel, T., Yasuda, G., French, R. L., Falk, D. R., & Hawley, R. S. (1993). The genetic analysis of achiasmate segregation in Drosophila melanogaster. III. The wild-type product of the Axs gene is required for the meiotic segregation of achiasmate homologs. Genetics, 134(3), 825–835. https://doi.org/10.1093/genetics/134.3.825

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free