Charge Carrier Dynamics in Co-evaporated MAPbI3with a Gradient in Composition

2Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Co-evaporation of metal halide perovskites by thermal evaporation is an attractive method since it does not require harmful solvents and enables precise control of the film thickness. Furthermore, the ability to manipulate the Fermi level allows the formation of a graded homojunction, providing interesting opportunities to improve the charge carrier collection efficiency. However, little is known about how these properties affect the charge carrier dynamics. In this work, the structural and optoelectronic properties of co-evaporated MAPbI3films varying in thickness (100, 400, and 750 nm) with a gradient in composition are analyzed. The X-ray diffraction patterns show that excess PbI2is only present in the thick layers. From X-ray photoelectron spectroscopy depth analysis, the I/Pb atomic ratio indicates methylammonium iodide deficiencies that become more prominent with thicker films, resulting in differently n-doped regions across the thick MAPbI3films. We suggest that due to these differently n-doped regimes, an internal electric field is formed. Side-selective time-resolved microwave photo conductivity measurements show an elongation of the charge carrier lifetimes on increasing thickness. These observations can be explained by the fact that excess carriers separate under the influence of the electric field, preventing rapid decay in the thick films.

Cite

CITATION STYLE

APA

Zhao, J., Li, J., Liu, X., Bannenberg, L. J., Bruno, A., & Savenije, T. J. (2022). Charge Carrier Dynamics in Co-evaporated MAPbI3with a Gradient in Composition. ACS Applied Energy Materials, 5(6), 7049–7055. https://doi.org/10.1021/acsaem.2c00664

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free