Background: We sought to assess the impact of amino-acid 18F-fluoro-ethyl-tyrosine (FET) positron emission tomography (PET) on the volumetric target definition for radiation therapy of high-grade glioma versus the current standard using MRI alone. Specifically, we investigated the influence of tumor grade, MR-defined tumor volume, and the extent of surgical resection on PET positivity. Methods: Fifty-four consecutive high-grade glioma patients (World Health Organization grades III-IV) with confirmed histology were scanned using FET-PET/CT and T1 and T2/fluid attenuated inversion recovery MRI. Gross tumor volume and clinical target volumes (CTVs) were defined in a blinded fashion based on MRI and subsequently PET, and volumetric analysis was performed. The extent of the surgical resection was reviewed using postoperative MRI. Results: Overall, for ∼90% of the patients, the PET-positive volumes were encompassed by T1 MRI with contrast-defined tumor plus a 20-mm margin. The tumor volume defined by PET was larger for glioma grade IV (P < .001) and smaller for patients with more extensive surgical resection (P = .004). The margin required to be added to the MRI-defined tumor in order to fully encompass the FET-PET positive volume tended to be larger for grade IV tumors (P = .018). Conclusion With an unchanged CTV margin and by including FET-PET for gross tumor volume definition, the CTV will increase moderately for most patients, and quite substantially for a minority of patients. Patients with grade IV glioma were found to be the primary candidates for PET-guided radiation therapy planning.
CITATION STYLE
Munck Af Rosenschold, P., Costa, J., Engelholm, S. A., Lundemann, M. J., Law, I., Ohlhues, L., & Engelholm, S. (2015). Impact of [18F]-fluoro-ethyl-tyrosine PET imaging on target definition for radiation therapy of high-grade glioma. Neuro-Oncology, 17(5), 757–763. https://doi.org/10.1093/neuonc/nou316
Mendeley helps you to discover research relevant for your work.