A wireless vision sensor network (WVSN) is built by using multiple image sensors connected wirelessly to a central server node performing video analysis, ultimately automating different tasks such as video surveillance. In such applications, a large deployment of sensors in the same way as Internet-of-Things (IoT) devices is required, leading to extreme requirements in terms of sensor cost, communication bandwidth and power consumption. To achieve the best possible trade-off, we propose in this paper a new concept that attempts to achieve image compression and early image recognition leading to lower bandwidth and smart image processing integrated at the sensing node. A WVSN implementation is proposed to save power consumption and bandwidth utilization by processing only part of the acquired image at the sensor node. A convolutional neural network is deployed at the central server node for the purpose of progressive image recognition. The proposed implementation is capable of achieving an average recognition accuracy of 88% with an average confidence probability of 83% for five subimages, while minimizing the overall power consumption at the sensor node as well as the bandwidth utilization between the sensor node and the central server node by 43% and 86%, respectively, compared to the traditional sensor node.
CITATION STYLE
AlHarami, A. K., Abubakar, A., Zhang, B., & Bermak, A. (2022). Progressive Early Image Recognition for Wireless Vision Sensor Networks. Sensors, 22(17). https://doi.org/10.3390/s22176348
Mendeley helps you to discover research relevant for your work.