Peptide nucleic acids (PNAs) have been developed for applications in biotechnology and therapeutics. There is great potential in the development of chemically modified PNAs or other triplex-forming ligands that selectively bind to RNA duplexes, but not single-stranded regions, at near-physiological conditions. Here, we report on a convenient synthesis route to a modified PNA monomer, thiopseudoisocytosine (L), and binding studies of PNAs incorporating the monomer L. Thermal melting and gel electrophoresis studies reveal that L-incorporated 8-mer PNAs have superior affinity and specificity in recognizing the duplex region of a model RNA hairpin to form a pyrimidine motif major-groove RNA2-PNA triplex, without appreciable binding to single-stranded regions to form an RNA-PNA duplex or, via strand invasion, forming an RNA-PNA2 triplex at near-physiological buffer condition. In addition, an L-incorporated 8-mer PNA shows essentially no binding to singlestranded or double-stranded DNA. Furthermore, an L-modified 6-mer PNA, but not pseudoisocytosine (J) modified or unmodified PNA, binds to the HIV-1 programmed 1 ribosomal frameshift stimulatory RNA hairpin at near-physiological buffer conditions. The stabilization of an RNA2-PNA triplex by L modification is facilitated by enhanced van der Waals contacts, base stacking, hydrogen bonding and reduced dehydration energy. The destabilization of RNA-PNA and DNA-PNA duplexes by L modification is due to the steric clash and loss of two hydrogen bonds in a Watson-Crick-like G-L pair. An RNA2-PNA triplex is significantly more stable than a DNA2-PNA triplex, probably because the RNA duplex major groove provides geometry compatibility and favorable backbone-backbone interactions with PNA. Thus, L-modified triplexforming PNAs may be utilized for sequencespecifically targeting duplex regions in RNAs for biological and therapeutic applications. © The Author(s) 2013. Published by Oxford University Press.
CITATION STYLE
Devi, G., Yuan, Z., Lu, Y., Zhao, Y., & Chen, G. (2014). Incorporation of thio-pseudoisocytosine into triplex-forming peptide nucleic acids for enhanced recognition of RNA duplexes. Nucleic Acids Research, 42(6), 4008–4018. https://doi.org/10.1093/nar/gkt1367
Mendeley helps you to discover research relevant for your work.