Approaching the ideal elastic strain limit in silicon nanowires

204Citations
Citations of this article
214Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Achieving high elasticity for silicon (Si) nanowires, one of the most important and versatile building blocks in nanoelectronics, would enable their application in flexible electronics and bio-nano interfaces. We show that vapor-liquid-solid–grown single-crystalline Si nanowires with diameters of ~100 nm can be repeatedly stretched above 10% elastic strain at room temperature, approaching the theoretical elastic limit of silicon (17 to 20%). A few samples even reached ~16% tensile strain, with estimated fracture stress up to ~20 GPa. The deformations were fully reversible and hysteresis-free under loading-unloading tests with varied strain rates, and the failures still occurred in brittle fracture, with no visible sign of plasticity. The ability to achieve this “deep ultra-strength” for Si nanowires can be attributed mainly to their pristine, defect-scarce, nanosized single-crystalline structure and atomically smooth surfaces. This result indicates that semiconductor nanowires could have ultra-large elasticity with tunable band structures for promising “elastic strain engineering” applications.

Cite

CITATION STYLE

APA

Zhang, H., Tersoff, J., Xu, S., Chen, H., Zhang, Q., Zhang, K., … Lu, Y. (2016). Approaching the ideal elastic strain limit in silicon nanowires. Science Advances, 2(8). https://doi.org/10.1126/sciadv.1501382

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free