We present an algorithm that enables casual 3D photography. Given a set of input photos captured with a hand-held cell phone or DSLR camera, our algorithm reconstructs a 3D photo, a central panoramic, textured, normal mapped, multi-layered geometric mesh representation. 3D photos can be stored compactly and are optimized for being rendered from viewpoints that are near the capture viewpoints. They can be rendered using a standard rasterization pipeline to produce perspective views with motion parallax. When viewed in VR, 3D photos provide geometrically consistent views for both eyes. Our geometric representation also allows interacting with the scene using 3D geometry-aware effects, such as adding new objects to the scene and artistic lighting effects. Our 3D photo reconstruction algorithm starts with a standard structure from motion and multi-view stereo reconstruction of the scene. The dense stereo reconstruction is made robust to the imperfect capture conditions using a novel near envelope cost volume prior that discards erroneous near depth hypotheses. We propose a novel parallax-tolerant stitching algorithm that warps the depth maps into the central panorama and stitches two color-and-depth panoramas for the front and back scene surfaces. The two panoramas are fused into a single non-redundant, well-connected geometric mesh. We provide videos demonstrating users interactively viewing and manipulating our 3D photos.
CITATION STYLE
Hedman, P., Alsisan, S., Szeliski, R., & Kopf, J. (2017). Casual 3D photography. In ACM Transactions on Graphics (Vol. 36). Association for Computing Machinery. https://doi.org/10.1145/3130800.3130828
Mendeley helps you to discover research relevant for your work.