Charting C–C coupling pathways in electrochemical CO2 reduction on Cu(111) using embedded correlated wavefunction theory

38Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The electrochemical CO2 reduction reaction (CO2RR) powered by excess zero-carbon-emission electricity to produce especially multicarbon (C2+) products could contribute to a carbon-neutral to carbon-negative economy. Foundational to the rational design of efficient, selective CO2RR electrocatalysts is mechanistic analysis of the best metal catalyst thus far identified, namely, copper (Cu), via quantum mechanical computations to complement experiments. Here, we apply embedded correlated wavefunction (ECW) theory, which regionally corrects the electron exchange-correlation error in density functional theory (DFT) approximations, to examine multiple C–C coupling steps involving adsorbed CO (*CO) and its hydrogenated derivatives on the most ubiquitous facet, Cu(111). We predict that two adsorbed hydrogenated CO species, either *COH or *CHO, are necessary precursors for C–C bond formation. The three kinetically feasible pathways involving these species yield all three possible products: *COH–CHO, *COH–*COH, and *OCH–*OCH. The most kinetically favorable path forms *COH–CHO. In contrast, standard DFT approximations arrive at qualitatively different conclusions, namely, that only *CO and *COH will prevail on the surface and their C–C coupling paths produce only *COH–*COH and *CO–*CO, with a preference for the first product. This work demonstrates the importance of applying qualitatively and quantitatively accurate quantum mechanical method to simulate electrochemistry in order ultimately to shed light on ways to enhance selectivity toward C2+ product formation via CO2RR electrocatalysts.

Cite

CITATION STYLE

APA

Zhao, Q., Martirez, J. M. P., & Carter, E. A. (2022). Charting C–C coupling pathways in electrochemical CO2 reduction on Cu(111) using embedded correlated wavefunction theory. Proceedings of the National Academy of Sciences of the United States of America, 119(44). https://doi.org/10.1073/pnas.2202931119

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free