Passwords are used for user authentication by almost every Internet service today, despite a number of wellknown weaknesses. Numerous attempts to replace passwords have failed, in part because changing users’ behavior has proven to be difficult. One approach to strengthening password-based authentication without changing user experience is to classify login attempts into normal and suspicious activity based on a number of parameters such as source IP, geo-location, browser configuration, and time of day. For the suspicious attempts, the service can then require additional verification, e.g., by an additional phone-based authentication step. Systems working along these principles have been deployed by a number of Internet services but have never been studied publicly. In this work, we perform the first public evaluation of a classification system for user authentication. In particular: (i) We develop a statistical framework for identifying suspicious login attempts. (ii) We develop a fully functional prototype implementation that can be evaluated efficiently on large datasets. (iii) We validate our system on a sample of real-life login data from LinkedIn as well as simulated attacks, and demonstrate that a majority of attacks can be prevented by imposing additional verification steps on only a small fraction of users. (iv) We provide a systematic study of possible attackers against such a system, including attackers targeting the classifier itself.
CITATION STYLE
Freeman, D. M., Jain, S., Dürmuth, M., Biggio, B., & Giacinto, G. (2016). Who Are You? A Statistical Approach to Measuring User Authenticity. In 23rd Annual Network and Distributed System Security Symposium, NDSS 2016. The Internet Society. https://doi.org/10.14722/ndss.2016.23240
Mendeley helps you to discover research relevant for your work.