Cloning and Characterization of a Na+-driven Anion Exchanger (NDAE1)

  • Romero M
  • Henry D
  • Nelson S
  • et al.
N/ACitations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Regulation of intra- and extracellular ion activities (e.g. H(+), Cl(-), Na(+)) is key to normal function of the central nervous system, digestive tract, respiratory tract, and urinary system. With our cloning of an electrogenic Na(+)/HCO(3)(-) cotransporter (NBC), we found that NBC and the anion exchangers form a bicarbonate transporter superfamily. Functionally three other HCO(3)(-) transporters are known: a neutral Na(+)/ HCO(3)(-) cotransporter, a K(+)/ HCO(3)(-) cotransporter, and a Na(+)-dependent Cl(-)-HCO(3)(-) exchanger. We report the cloning and characterization of a Na(+)-coupled Cl(-)-HCO(3)(-) exchanger and a physiologically unique bicarbonate transporter superfamily member. This Drosophila cDNA encodes a 1030-amino acid membrane protein with both sequence homology and predicted topology similar to the anion exchangers and NBCs. The mRNA is expressed throughout Drosophila development and is prominent in the central nervous system. When expressed in Xenopus oocytes, this membrane protein mediates the transport of Cl(-), Na(+), H(+), and HCO(3)(-) but does not require HCO(3)(-). Transport is blocked by the stilbene 4,4'-diisothiocyanodihydrostilbene- 2, 2'-disulfonates and may not be strictly electroneutral. Our functional data suggest this Na(+) driven anion exchanger (NDAE1) is responsible for the Na(+)-dependent Cl(-)-HCO(3)(-) exchange activity characterized in neurons, kidney, and fibroblasts. NDAE1 may be generally important for fly development, because disruption of this gene is apparently lethal to the Drosophila larva.

Cite

CITATION STYLE

APA

Romero, M. F., Henry, D., Nelson, S., Harte, P. J., Dillon, A. K., & Sciortino, C. M. (2000). Cloning and Characterization of a Na+-driven Anion Exchanger (NDAE1). Journal of Biological Chemistry, 275(32), 24552–24559. https://doi.org/10.1074/jbc.m003476200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free