Organic electrochemical transistors (OECTs) hold promise for developing a variety of high-performance (bio-)electronic devices/circuits. While OECTs based on p-type semiconductors have achieved tremendous progress in recent years, n-type OECTs still suffer from low performance, hampering the development of power-efficient electronics. Here, it is demonstrated that fine-tuning the molecular weight of the rigid, ladder-type n-type polymer poly(benzimidazobenzophenanthroline) (BBL) by only one order of magnitude (from 4.9 to 51 kDa) enables the development of n-type OECTs with record-high geometry-normalized transconductance (gm,norm ≈ 11 S cm−1) and electron mobility × volumetric capacitance (µC* ≈ 26 F cm−1 V−1 s−1), fast temporal response (0.38 ms), and low threshold voltage (0.15 V). This enhancement in OECT performance is ascribed to a more efficient intermolecular charge transport in high-molecular-weight BBL than in the low-molecular-weight counterpart. OECT-based complementary inverters are also demonstrated with record-high voltage gains of up to 100 V V−1 and ultralow power consumption down to 0.32 nW, depending on the supply voltage. These devices are among the best sub-1 V complementary inverters reported to date. These findings demonstrate the importance of molecular weight in optimizing the OECT performance of rigid organic mixed ionic–electronic conductors and open for a new generation of power-efficient organic (bio-)electronic devices.
CITATION STYLE
Wu, H. Y., Yang, C. Y., Li, Q., Kolhe, N. B., Strakosas, X., Stoeckel, M. A., … Fabiano, S. (2022). Influence of Molecular Weight on the Organic Electrochemical Transistor Performance of Ladder-Type Conjugated Polymers. Advanced Materials, 34(4). https://doi.org/10.1002/adma.202106235
Mendeley helps you to discover research relevant for your work.