Activation of the Na+-K+-2Cl-- cotransporter (NKCC2) and the Na+-Cl--cotransporter (NCC) by vasopressin includes their phosphorylation at defined, conservedN-terminal threonine and serine residues, but the kinase pathways thatmediate this action of vasopressin are not well understood. Two homologous Ste20- like kinases, SPS-related proline/alanine-rich kinase (SPAK) and oxidative stress responsive kinase (OSR1), can phosphorylate the cotransporters directly. In this process, a full-length SPAK variant and OSR1 interact with a truncated SPAK variant, which has inhibitory effects. Here, we tested whether SPAK is an essential component of the vasopressin stimulatory pathway. We administered desmopressin, a V2 receptor- specific agonist, to wild-type mice, SPAK-deficient mice, and vasopressin-deficient rats. Desmopressin induced regulatory changes in SPAK variants, but not in OSR1 to the same degree, and activated NKCC2 and NCC. Furthermore, desmopressin modulated both the full-length and truncated SPAK variants to interact with and phosphorylate NKCC2, whereas only full-length SPAK promoted the activation of NCC. In summary, these results suggest that SPAK mediates the effect of vasopressin on sodium reabsorption along the distal nephron. Copyright © 2013 by the American Society of Nephrology.
CITATION STYLE
Saritas, T., Borschewski, A., McCormick, J. A., Paliege, A., Dathe, C., Uchida, S., … Mutig, K. (2013). SPAK differentially mediates vasopressin effects on sodium cotransporters. Journal of the American Society of Nephrology, 24(3), 407–418. https://doi.org/10.1681/ASN.2012040404
Mendeley helps you to discover research relevant for your work.