Ultrafast carbon nanotubes growth on recycled carbon fibers and their evaluation on interfacial shear strength in reinforced composites

11Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The global demand for products manufactured with carbon fibers (CFs) has increased in recent years; however, the waste generated at the end of the product lifetime has also increased. In this research, the impact of the addition of carbon nanotubes (CNTs) on the interlaminated resistance of recycled carbon fibers (RCFs) was studied. In this work, a recycling process of the composite material was applied via thermolysis to obtain the CFs, followed by the growth of CNTs on their surface using the Poptube technique. The recycling temperature were 500 °C and 700 °C; and ferrocene and polypyrrole were used to grow CNTs on CFs surface. CNTs were verified by Raman spectroscopy and scanning electron microscopy (SEM). Finally, to determine the interlaminar resistance, a double cantilever beam (DCB) test was performed. The results indicate that with Poptube technique, CNTs can be grown on RCFs using both impregnations. Thermolysis recycling process at 500 °C allowed CFs without resin residues and without visible damage. The DCB tests showed a decrease in the fracture resistance in mode I loading of 34.9% for the polypyrrole samples and 29.3% for the ferrocene samples compared with the virgin carbon fibers (VCFs) samples with a resistance of 1052.5 J/m2.

Cite

CITATION STYLE

APA

Salas, A., Medina, C., Vial, J. T., Flores, P., Canales, C., Tuninetti, V., … Meléndrez, M. F. (2021). Ultrafast carbon nanotubes growth on recycled carbon fibers and their evaluation on interfacial shear strength in reinforced composites. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-84419-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free