Quantitation of DNA methylation by quantitative multiplex methylation-specific PCR (QM-MSP) assay

7Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The defining feature of the Quantitative Multiplex Methylation-Specific PCR (QM-MSP) method to sensitively quantify DNA methylation is the two-step PCR approach for a multiplexed analysis of a panel of up to 12 genes in clinical samples with minimal quantities of DNA. In the first step, for up to 12 genes tested, one pair of gene-specific primers (forward and reverse) amplifies the methylated and unmethylated copies of the same gene simultaneously and in multiplex, in one PCR reaction. This methylation-independent amplification step produces amplicons of up to 109 copies per μL after 36 cycles of PCR. In the second step, the amplicons of the first reaction (STEP 1) are quantified with a standard curve using real-time PCR and two independent fluorophores to detect methylated/unmethylated DNA of each gene in the same well (e.g., 6FAM and VIC). One methylated copy is detectable in 100,000 reference gene copies. Methylation is reported on a continuous scale. For the gene panel, the highest level of normal DNA methylation above which a sample would be called positive is derived by using Receiver Operating Characteristic (ROC), maximizing assay specificity and sensitivity to distinguish between normal/benign versus tumor DNA. QM-MSP can be applied to clinical samples of fresh or fixed ductal cells, ductal fluid, nipple fluid, fine needle aspirates, core biopsies, and tumor tissue sections.

Cite

CITATION STYLE

APA

Fackler, M. J., & Sukumar, S. (2018). Quantitation of DNA methylation by quantitative multiplex methylation-specific PCR (QM-MSP) assay. In Methods in Molecular Biology (Vol. 1708, pp. 473–496). Humana Press Inc. https://doi.org/10.1007/978-1-4939-7481-8_24

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free