MADS-box transcription factors FLOWERING LOCUS C (FLC) and APETALA1 (AP1)/CAULIFLOWER (CAL) have an opposite effect in vernalization-regulated flowering in Arabidopsis. In woody plants, a functional FLC-like gene has not been verified through reverse genetics. To reveal chilling-regulated flowering mechanisms in woody fruit crops, we conducted phylogenetic analysis of the annotated FLC-like proteins of apple and found that these proteins are grouped more closely to Arabidopsis AP1 than the FLC group. An FLC3-like MADS-box gene from columnar apple trees (Malus domestica) (MdFLC3-like) was cloned for functional analysis through a constitutive transgenic expression. The MdFLC3-like shows 88% identity to pear’s FLC-like genes and 82% identity to blueberry’s CAL1 gene (VcCAL1). When constitutively expressed in a highbush blueberry (Vaccinium corymbosum L.) cultivar ‘Legacy’, the MdFLC3-like induced expressions of orthologues of three MADS-box genes, including APETALA1, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, and CAL1. As a consequence, in contrast to the anticipated late flowering associated with an overexpressed FLC-like, the MdFLC3-like promoted flowering of transgenic blueberry plants under nonchilling conditions where nontransgenic ‘Legacy’ plants could not flower. Thus, the constitutively expressed MdFLC3-like in transgenic blueberries functioned likely as a blueberry’s VcCAL1. The results are anticipated to facilitate future studies for revealing chilling-mediated flowering mechanisms in woody plants.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Zong, X., Zhang, Y., Walworth, A., Tomaszewski, E. M., Callow, P., Zhong, G. Y., & Song, G. Q. (2019). Constitutive expression of an apple flc3-like gene promotes flowering in transgenic blueberry under nonchilling conditions. International Journal of Molecular Sciences, 20(11). https://doi.org/10.3390/ijms20112775