Despite their miniature brains, insects exhibit substantial variation in brain size. Although the functional significance of this variation is increasingly recognized, research on whether differences in insect brain sizes are mainly the result of constraints or selective pressures has hardly been performed. Here, we address this gap by combining prospective and retrospective phylogenetic-based analyses of brain size for a major insect group, bees (superfamily Apoidea). Using a brain dataset of 93 species from North America and Europe, we found that body size was the single best predictor of brain size in bees. However, the analyses also revealed that substantial variation in brain size remained even when adjusting for body size. We consequently asked whether such variation in relative brain size might be explained by adaptive hypotheses. We found that ecologically specialized species with single generations have larger brains - relative to their body size - than generalist or multi-generation species, but we did not find an effect of sociality on relative brain size. Phylogenetic reconstruction further supported the existence of different adaptive optima for relative brain size in lineages differing in feeding specialization and reproductive strategy. Our findings shed new light on the evolution of the insect brain, highlighting the importance of ecological pressures over social factors and suggesting that these pressures are different from those previously found to influence brain evolution in other taxa.
CITATION STYLE
Sayol, F., Collado, M., Garcia-Porta, J., Seid, M. A., Gibbs, J., Agorreta, A., … Bartomeus, I. (2020). Feeding specialization and longer generation time are associated with relatively larger brains in bees: Brain evolution bees. Proceedings of the Royal Society B: Biological Sciences, 287(1935). https://doi.org/10.1098/rspb.2020.0762
Mendeley helps you to discover research relevant for your work.