Reaction initiation in enzyme crystals by diffusion of substrate

32Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

Abstract

Ever since the first structure of an enzyme, lysozyme, was solved, scientists have been eager to explore how these molecules perform their catalytic function. There has been an overwhelmingly large body of publications that report the X-ray structures of enzymes determined after substrate and ligand binding. None of them truly show the structures of an enzyme working freely through a sequence of events that range from the formation of the enzyme–substrate complex to the dissociation of the product. The technical difficulties were too severe. By 1969, Sluyterman and de Graaf had pointed out that there might be a way to start a reaction in an enzyme crystal by diffusion and following its catalytic cycle in its entirety with crystallographic methods. The crystal only has to be thin enough so that the diffusion is not rate limiting. Of course, the key questions are as follows: How thin should the crystal be? Will the existing X-ray sources be able to collect data from a thin enough crystal fast enough? This review shines light on these questions.

Cite

CITATION STYLE

APA

Schmidt, M. (2020, February 1). Reaction initiation in enzyme crystals by diffusion of substrate. Crystals. MDPI AG. https://doi.org/10.3390/cryst10020116

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free