Delta radiomic features improve prediction for lung cancer incidence: A nested case–control analysis of the National Lung Screening Trial

28Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Current guidelines for lung cancer screening increased a positive scan threshold to a 6 mm longest diameter. We extracted radiomic features from baseline and follow-up screens and performed size-specific analyses to predict lung cancer incidence using three nodule size classes (<6 mm [small], 6-16 mm [intermediate], and ≥16 mm [large]). Methods: We extracted 219 features from baseline (T0) nodules and 219 delta features which are the change from T0 to first follow-up (T1). Nodules were identified for 160 incidence cases diagnosed with lung cancer at T1 or second follow-up screen (T2) and for 307 nodule-positive controls that had three consecutive positive screens not diagnosed as lung cancer. The cases and controls were split into training and test cohorts; classifier models were used to identify the most predictive features. Results: The final models revealed modest improvements for baseline and delta features when compared to only baseline features. The AUROCs for small- and intermediate-sized nodules were 0.83 (95% CI 0.76-0.90) and 0.76 (95% CI 0.71-0.81) for baseline-only radiomic features, respectively, and 0.84 (95% CI 0.77-0.90) and 0.84 (95% CI 0.80-0.88) for baseline and delta features, respectively. When intermediate and large nodules were combined, the AUROC for baseline-only features was 0.80 (95% CI 0.76-0.84) compared with 0.86 (95% CI 0.83-0.89) for baseline and delta features. Conclusions: We found modest improvements in predicting lung cancer incidence by combining baseline and delta radiomics. Radiomics could be used to improve current size-based screening guidelines.

Cite

CITATION STYLE

APA

Cherezov, D., Hawkins, S. H., Goldgof, D. B., Hall, L. O., Liu, Y., Li, Q., … Schabath, M. B. (2018). Delta radiomic features improve prediction for lung cancer incidence: A nested case–control analysis of the National Lung Screening Trial. Cancer Medicine, 7(12), 6340–6356. https://doi.org/10.1002/cam4.1852

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free