Wafer-Scale Gold Nanomesh via Nanotransfer Printing toward a Cost-Efficient Multiplex Sensing Platform

5Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

Multiplex sensing platforms via large-scale and cost-efficient fabrication processes for detecting biological and chemical substance are essential for many applications such as intelligent diagnosis, environmental monitoring, etc. For the past decades, the performance of those sensors has been significantly improved by the rapid development of nanofabrication technologies. However, facile processes with cost-effectiveness and large-scale throughput still present challenges. Nano-transfer printing together with the imprinting process shows potential for the efficient fabrication of 100 nm structures. Herein, a wafer-scale gold nanomesh (AuNM) structure on glass substrates with 100 nm scale features via nano-imprinting and secondary transfer printing technology is reported. Furthermore, potential sensing applications are demonstrated towards biochemical substance detection by using AuNM structures as highly responsive substrates for achieving the surface enhanced Raman spectroscopy (SERS), and as working electrodes of electrochemical analysisfor the detection of metallic ions. In the SERS detection mode, different nucleotides can be detected down to 1 nm level and distinguished via theirunique fingerprint patterns. As for electrochemical analysis mode, Pb2+ ions can be detected out of other interfering components with concentration down to 30 nm. These multimodal sensing mechanisms provide complementary informationand pave the way for low-cost and high-performance sensing platforms.

References Powered by Scopus

Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species

5733Citations
N/AReaders
Get full text

Surface-enhanced Raman spectroscopy

2818Citations
N/AReaders
Get full text

Conduction model of metal oxide gas sensors

2362Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Advances in lithographic techniques for precision nanostructure fabrication in biomedical applications

28Citations
N/AReaders
Get full text

A stretchable wearable sensor with dual working electrodes for reliable detection of uric acid in sweat

11Citations
N/AReaders
Get full text

Direct Printing of Ultrathin Block Copolymer Film with Nano-in-Micro Pattern Structures

3Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Gao, M., Zhao, Y. B., Zhao, Z. J., Qiu, G., Tao, Y., Bao, G., … Wang, J. (2023). Wafer-Scale Gold Nanomesh via Nanotransfer Printing toward a Cost-Efficient Multiplex Sensing Platform. Advanced Materials Technologies, 8(9). https://doi.org/10.1002/admt.202201758

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 1

50%

Researcher 1

50%

Readers' Discipline

Tooltip

Environmental Science 1

33%

Chemistry 1

33%

Engineering 1

33%

Save time finding and organizing research with Mendeley

Sign up for free