LGML: Logic guided machine learning (student abstract)

7Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

We introduce Logic Guided Machine Learning (LGML), a novel approach that symbiotically combines machine learning (ML) and logic solvers to learn mathematical functions from data. LGML consists of two phases, namely a learningphase and a logic-phase with a corrective feedback loop, such that, the learning-phase learns symbolic expressions from input data, and the logic-phase cross verifies the consistency of the learned expression with known auxiliary truths. If inconsistent, the logic-phase feeds back "counterexamples"to the learning-phase. This process is repeated until the learned expression is consistent with auxiliary truth. Using LGML, we were able to learn expressions that correspond to the Pythagorean theorem and the sine function, with several orders of magnitude improvements in data efficiency compared to an approach based on an out-of-the-box multi-layered perceptron (MLP).

Cite

CITATION STYLE

APA

Scott, J., Panju, M., & Ganesh, V. (2020). LGML: Logic guided machine learning (student abstract). In AAAI 2020 - 34th AAAI Conference on Artificial Intelligence (pp. 13909–13910). AAAI press. https://doi.org/10.1609/aaai.v34i10.7227

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free