SIZER: A Dataset and Model for Parsing 3D Clothing and Learning Size Sensitive 3D Clothing

45Citations
Citations of this article
123Readers
Mendeley users who have this article in their library.
Get full text

Abstract

While models of 3D clothing learned from real data exist, no method can predict clothing deformation as a function of garment size. In this paper, we introduce SizerNet to predict 3D clothing conditioned on human body shape and garment size parameters, and ParserNet to infer garment meshes and shape under clothing with personal details in a single pass from an input mesh. SizerNet allows to estimate and visualize the dressing effect of a garment in various sizes, and ParserNet allows to edit clothing of an input mesh directly, removing the need for scan segmentation, which is a challenging problem in itself. To learn these models, we introduce the SIZER dataset of clothing size variation which includes 100 different subjects wearing casual clothing items in various sizes, totaling to approximately 2000 scans. This dataset includes the scans, registrations to the SMPL model, scans segmented in clothing parts, garment category and size labels. Our experiments show better parsing accuracy and size prediction than baseline methods trained on SIZER. The code, model and dataset will be released for research purposes at: https://virtualhumans.mpi-inf.mpg.de/sizer/.

Cite

CITATION STYLE

APA

Tiwari, G., Bhatnagar, B. L., Tung, T., & Pons-Moll, G. (2020). SIZER: A Dataset and Model for Parsing 3D Clothing and Learning Size Sensitive 3D Clothing. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 12348 LNCS, pp. 1–18). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-58580-8_1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free