QNet: A tool for querying protein interaction networks

42Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Molecular interaction databases can be used to study the evolution of molecular pathways across species. Querying such pathways is a challenging computational problem, and recent efforts have been limited to simple queries (paths), or simple networks (forests). In this paper, we significantly extend the class of pathways that can be efficiently queried to the case of trees, and graphs of bounded treewidth. Our algorithm allows the identification of non-exact (homeomorphic) matches, exploiting the color coding technique of Alon et al. We implement a tool for tree queries, called QNet, and test its retrieval properties in simulations and on real network data. We show that QNet searches queries with up to 9 proteins in seconds on current networks, and outperforms sequence-based searches. We also use QNet to perform the first large scale cross-species comparison of protein complexes, by querying known yeast complexes against a fly protein interaction network. This comparison points to strong conservation between the two species, and underscores the importance of our tool in mining protein interaction networks. © Springer-Verlag Berlin Heidelberg 2007.

Cite

CITATION STYLE

APA

Dost, B., Shlomi, T., Gupta, N., Ruppin, E., Bafha, V., & Sharan, R. (2007). QNet: A tool for querying protein interaction networks. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 4453 LNBI, pp. 1–15). Springer Verlag. https://doi.org/10.1007/978-3-540-71681-5_1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free