Here, we report the isolation and characterization of a strong dominant-negative phytochrome A (phyA) mutation (phyA-300D) in Arabidopsis. This mutation carries a single amino acid substitution at residue 631, from valine to methionine (V631M), in the core region within the C-terminal half of PHYA. This PHYA core region contains two protein-interactive motifs, PAS1 and PAS2. Val-631 is located within the PAS1 motif. The phyA-V631M mutant protein is photochemically active and accumulates to a level similar to wild type in dark-grown seedlings. Overexpression of PHYA-V631M in a wild-type background results in a dominant-negative interference with endogenous wild-type phyA, whereas PHYA-V631M in a phyA null mutant background is inactive. To investigate the specificity of this mutation within the phytochrome family, the corresponding amino acid substitution (V664M) was created in the PHYTOCHROME B (PHYB) polypeptide. We found that the phyB-V664M mutant protein is physiologically active in phyB mutant and causes no interfering effect in a wild-type background. Together, our results reveal a unique feature in phyA signal propagation through the C-terminal core region.
CITATION STYLE
Fry, R. C., Habashi, J., Okamoto, H., & Xing, W. D. (2002). Characterization of a strong dominant phytochrome A mutation unique to phytochrome A signal propagation. Plant Physiology, 130(1), 457–465. https://doi.org/10.1104/pp.005264
Mendeley helps you to discover research relevant for your work.