Application of the fluoren-9-ylmethoxycarbonyl (Fmoc)-based solid-phase segment condensation approach to the preparation of sulfated peptides was investigated through the synthesis of human big gastrin-II, a 34-residue sulfated tyrosine [Tyr(SO3H)]-containing peptide. Highly acid-sensitive 2-chlorotrityl resin (Clt resin) was exclusively employed as an anchor-resin for the preparation of the three peptide segments having the C-terminal Pro residue as well as of the Tyr(SO3H)-containing resin-bound segment. By using the PyBOP-mediated coupling protocol [PyBOP=benzotriazolyloxytris(pyrrolidino)phosphonium hexafluorophosphate], we successively condensed each segment and constructed the 34-residue peptide-resin without any difficulty. The final acid treatment of the fully protected peptide-resin at low temperature (90% aqueous TFA, 0°C for 8 h), which can detach a Tyr(SO3H)-containing peptide from the resin and remove the protecting groups concurrently with minimum deterioration of the sulfate, afforded a crude sulfated peptide. After one-step HPLC purification, a highly homogeneous human big gastrin-II was easily obtained in 14% yield from the protected peptide-resin. The sulfate form of the C-terminal glycine-extended gastrin (G34-Gly sulfate), a posttranslational processing intermediate of gastrin-II, was also successfully prepared with the segment condensation approach (11% yield). These results demonstrated the usefulness of the segment condensation protocol for preparing large Tyr(SO3H)-containing peptides.
CITATION STYLE
Kitagawa, K., Aida, C., Fujiwara, H., Yagami, T., & Futaki, S. (2001). Facile solid-phase synthesis of sulfated tyrosine-containing peptides: Part II. Total synthesis of human big gastrin-II and its C-terminal glycine-extended peptide (G34-Gly sulfate) by the solid-phase segment condensation approach. Chemical and Pharmaceutical Bulletin, 49(8), 958–963. https://doi.org/10.1248/cpb.49.958
Mendeley helps you to discover research relevant for your work.