Given a holomorphic vector bundle E over a compact Kahler manifold X, one defines twisted Gromov-Witten invariants of X to be intersection numbers in moduli spaces of stable maps f : Σ → X with the cap product of the virtual fundamental class and a chosen multiplicative invertible characteristic class of the virtual vector bundle H0(Σ, f*E) ⊖ H1(Σ, f*E). Using the formalism of quantized quadratic Hamiltonians [25], we express the descendant potential for the twisted theory in terms of that for X. This result (Theorem 1) is a consequence of Mumford's Grothendieck-Riemann-Roch theorem applied to the universal family over the moduli space of stable maps. It determines all twisted Gromov-Witten invariants, of all genera, in terms of untwisted invariants. When E is concave and the ℂx-equivariant inverse Euler class is chosen as the characteristic class, the twisted invariants of X give Gromov-Witten invariants of the total space of E. "Nonlinear Serre duality" [21], [23] expresses Gromov-Witten invariants of E in terms of those of the super-manifold ∏E: it relates Gromov-Witten invariants of X twisted by the inverse Euler class and E to Gromov-Witten invariants of X twisted by the Euler class and E*. We derive from Theorem 1 nonlinear Serre duality in a very general form (Corollary 2). When the bundle E is convex and a submanifold Y ⊂ X is defined by a global section of E, the genus-zero Gromov-Witten invariants of ∏E coincide with those of Y. We establish a "quantum Lefschetz hyperplane section principle" (Theorem 2) expressing genus-zero Gromov-Witten invariants of a complete intersection Y in terms of those of X. This extends earlier results [4], [9], [18], [29], [33] and yields most of the known mirror formulas for toric complete intersections.
CITATION STYLE
Coates, T., & Givental, A. (2007). Quantum Riemann-Roch, Lefschetz and Serre. Annals of Mathematics, 165(1), 15–53. https://doi.org/10.4007/annals.2007.165.15
Mendeley helps you to discover research relevant for your work.