Atlas-Powered Deep Learning (ADL) - Application to Diffusion Weighted MRI

2Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Deep learning has a great potential for estimating biomarkers in diffusion weighted magnetic resonance imaging (dMRI). Atlases, on the other hand, are a unique tool for modeling the spatio-temporal variability of biomarkers. In this paper, we propose the first framework to exploit both deep learning and atlases for biomarker estimation in dMRI. Our framework relies on non-linear diffusion tensor registration to compute biomarker atlases and to estimate atlas reliability maps. We also use non-linear tensor registration to align the atlas to a subject and to estimate the error of this alignment. We use the biomarker atlas, atlas reliability map, and alignment error map, in addition to the dMRI signal, as inputs to a deep learning model for biomarker estimation. We use our framework to estimate fractional anisotropy and neurite orientation dispersion from down-sampled dMRI data on a test cohort of 70 newborn subjects. Results show that our method significantly outperforms standard estimation methods as well as recent deep learning techniques. Our method is also more robust to higher measurement down-sampling factors. Our study shows that the advantages of deep learning and atlases can be synergistically combined to achieve unprecedented biomarker estimation accuracy in dMRI.

Cite

CITATION STYLE

APA

Karimi, D., & Gholipour, A. (2022). Atlas-Powered Deep Learning (ADL) - Application to Diffusion Weighted MRI. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 13431 LNCS, pp. 123–132). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-16431-6_12

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free