Forest Aboveground Biomass Estimation Using Machine Learning Ensembles: Active Learning Strategies for Model Transfer and Field Sampling Reduction

3Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Biomass is a crucial indicator of the carbon sequestration capacity of a vegetation ecosystem. Its dynamic is of interest because it impacts on the carbon cycle, which plays an important role in the global climate and its changes. This work presents a novel technique, able to transfer a calibrated regression model between different areas by exploiting an active learning methodology and using Shannon’s entropy as a discriminator for sample selection. Model calibration is performed based on a reference area for which an extended ground truth is available and implemented via regression bootstrap. Then, re-calibration samples for model transfer are selected through active learning, allowing for choosing a limited number of points to be investigated for training data collection. Different sampling strategies and regression techniques have been tested to demonstrate that a significant reduction in the number of calibration samples does not affect the estimation performance. The proposed workflow has been tested on a dataset concerning Finnish forests. Experimental results show that the joint exploitation of regression ensembles and active learning dramatically reduces the amount of field sampling, providing aboveground biomass estimates comparable to those obtained using literature techniques, which need extended training sets to build reliable predictions.

Cite

CITATION STYLE

APA

Amitrano, D., Giacco, G., Marrone, S., Pascarella, A. E., Rigiroli, M., & Sansone, C. (2023). Forest Aboveground Biomass Estimation Using Machine Learning Ensembles: Active Learning Strategies for Model Transfer and Field Sampling Reduction. Remote Sensing, 15(21). https://doi.org/10.3390/rs15215138

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free