Insufficient removal of microplastics (MPs) and nanoplastics (NPs) may exert negative effects on the environment and human health during wastewater reclamation. The fertilizer-driven forward osmosis (FDFO) is an emerging potential technology to generate high-quality water for irrigation of hydroponic systems. In this study, the removal of MPs/NPs by the FDFO process together with their impact on FDFO membrane fouling was investigated, due to FDFO’s low molecular weight cut-off and energy requirement by using fertilizer as draw solution. Plastic particles with two different sizes (100 nm and 1 µm) and extracellular polymers released by real wastewater bacteria were utilized as model compounds for FDFO performance comparison. Results show that FDFO membrane system could generate high-quality irrigation water with only fertilizer, completely removing extracellular polymers, MPs and NPs from wastewater. It was found that the MPs and NPs themselves do not cause a significant membrane fouling. Moreover, it could help to reduce the membrane fouling caused by extracellular substances. That is probably because MPs and NPs helped to form a loose and porous fouling layer. Therefore, the FDFO process could be a long-term stable (low fouling) process for the reclamation of wastewater with high-quality requirements.
CITATION STYLE
Wang, Z., Liu, K., Gao, Y., Li, G., Li, Z., Wang, Q., … Li, S. (2021). Removal and fouling influence of microplastics in fertilizer driven forward osmosis for wastewater reclamation. Membranes, 11(11). https://doi.org/10.3390/membranes11110845
Mendeley helps you to discover research relevant for your work.