An Experimental and Comparative Performance Evaluation of a Hybrid Photovoltaic-Thermoelectric System

14Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

The majority of incident solar irradiance causes thermalization in photovoltaic (PV) cells, attenuating their efficiency. In order to use solar energy on a large scale and reduce carbon emissions, their efficiency must be enhanced. Effective thermal management can be utilized to generate additional electrical power while simultaneously improving photovoltaic efficiency. In this work, an experimental model of a hybrid photovoltaic-thermoelectric generation (PV-TEG) system is developed. Ten bismuth telluride-based thermoelectric modules are attached to the rear side of a 10 W polycrystalline silicon-based photovoltaic module in order to recover and transform waste thermal energy to usable electrical energy, ultimately cooling the PV cells. The experiment was then carried out for 10 days in Lahore, Pakistan, on both a simple PV module and a hybrid PV-TEG system. The findings revealed that a hybrid system has boosted PV module output power and conversion efficiency. The operating temperature of the PV module in the hybrid system is reduced by 5.5%, from 55°C to 52°C. Due to a drop in temperature and the addition of some recovered energy by thermoelectric modules, the total output power and conversion efficiency of the system increased. The hybrid system’s cumulative output power increased by 19% from 8.78 to 10.84 W, compared to the simple PV system. Also, the efficiency of the hybrid PV-TEG system increased from 11.6 to 14%, which is an increase of 17% overall. The results of this research could provide consideration for designing commercial hybrid PV-TEG systems.

Cite

CITATION STYLE

APA

Khan, M. A. I., Khan, M. I., Kazim, A. H., Shabir, A., Riaz, F., Mustafa, N., … Salman, C. A. (2021). An Experimental and Comparative Performance Evaluation of a Hybrid Photovoltaic-Thermoelectric System. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.722514

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free