Extreme learning machine based prediction of soil shear strength: A sensitivity analysis using Monte Carlo simulations and feature backward elimination

52Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

Abstract

Machine Learning (ML) has been applied widely in solving a lot of real-world problems. However, this approach is very sensitive to the selection of input variables for modeling and simulation. In this study, the main objective is to analyze the sensitivity of an advanced ML method, namely the Extreme Learning Machine (ELM) algorithm under different feature selection scenarios for prediction of shear strength of soil. Feature backward elimination supported by Monte Carlo simulations was applied to evaluate the importance of factors used for the modeling. A database constructed from 538 samples collected from Long Phu 1 power plant project was used for analysis. Well-known statistical indicators, such as the correlation coefficient (R), root mean squared error (RMSE), and mean absolute error (MAE), were utilized to evaluate the performance of the ELM algorithm. In each elimination step, the majority vote based on six elimination indicators was selected to decide the variable to be excluded. A number of 30,000 simulations were conducted to find out the most relevant variables in predicting the shear strength of soil using ELM. The results show that the performance of ELM is good but very different under different combinations of input factors. The moisture content, liquid limit, and plastic limit were found as the most critical variables for the prediction of shear strength of soil using the ML model.

Cite

CITATION STYLE

APA

Pham, B. T., Nguyen-Thoi, T., Ly, H. B., Nguyen, M. D., Al-Ansari, N., Tran, V. Q., & Le, T. T. (2020). Extreme learning machine based prediction of soil shear strength: A sensitivity analysis using Monte Carlo simulations and feature backward elimination. Sustainability (Switzerland), 12(6). https://doi.org/10.3390/su12062339

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free