Heterozygous LmnadelK32 mice develop dilated cardiomyopathy through a combined pathomechanism of haploinsufficiency and peptide toxicity

48Citations
Citations of this article
85Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Dilated cardiomyopathy (DCM) associates left ventricular (LV) dilatation and systolic dysfunction and is amajor cause of heart failure and cardiac transplantation. LMNA gene encodes lamins A/C, proteins of the nuclear envelope. LMNA mutations cause DCM with conduction and/or rhythm defects. The pathomechanisms linking mutations to DCM remain to be elucidated. We investigated the phenotype and associated pathomechanisms of heterozygous LmnaΔK32/+ (Het) knock-in mice, which carry a human mutation. Het mice developed a cardiac- specific phenotype. Two phases, with two different pathomechanisms, could be observed that lead to the development of cardiac dysfunction, DCM and death between 35 and 70 weeks of age. In young Het hearts, there was a clear reduction in lamin A/C level, mainly due to the degradation of toxic ΔK32-lamin. As a side effect, lamin A/C haploinsufficiency probably triggers the cardiac remodelling. In older hearts, when DCMhas developed, the lamin A/C levelwasnormalized andassociated with increased toxic ΔK32-lamin expression. Crossing our mice with theUbG76V-GFPubiquitin-proteasomesystem (UPS) reporter mice revealed a heartspecific UPS impairment in Het. While UPS impairment itself has a clear deleterious effect on engineered heart tissue's force of contraction, it also leads to the nuclear aggregation of viral-mediatedexpression of ΔK32-lamin. In conclusion, Het mice are the first knock-in Lmna model with cardiac-specific phenotype at the heterozygous state. Altogether, our data provide evidence that Het cardiomyocytes have to deal with major dilemma: mutant lamin A/C degradation or normalization of lamin level to fight the deleterious effect of lamin haploinsufficiency, both leading to DCM. © The Author 2013. Published by Oxford University Press. All rights reserved.

Cite

CITATION STYLE

APA

Cattin, M. E., Bertrand, A. T., Schlossarek, S., Le Bihan, M. C., Jensen, S. S., Neuber, C., … Bonne, G. (2013). Heterozygous LmnadelK32 mice develop dilated cardiomyopathy through a combined pathomechanism of haploinsufficiency and peptide toxicity. Human Molecular Genetics, 22(15), 3152–3164. https://doi.org/10.1093/hmg/ddt172

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free