This study applied artificial intelligence to help nurses address problems and receive instructions through information technology. Nurses make diagnoses according to professional knowledge, clinical experience, and even instinct. Without comprehensive knowledge and thinking, diagnostic accuracy can be compromised and decisions may be delayed. We used a back-propagation neural network and other tools for data mining and statistical analysis. We further compared the prediction accuracy of the previous methods with an adaptive-network-based fuzzy inference system and the back-propagation neural network, identifying differences in the questions and in nurse satisfaction levels before and after using the nursing information system. This study investigated the use of artificial intelligence to generate nursing diagnoses. The percentage of agreement between diagnoses suggested by the information system and those made by nurses was as much as 87 percent. When patients are hospitalized, we can calculate the probability of various nursing diagnoses based on certain characteristics.
CITATION STYLE
Liao, P. H., Hsu, P. T., Chu, W., & Chu, W. C. (2015). Applying artificial intelligence technology to support decision-making in nursing: A case study in Taiwan. Health Informatics Journal, 21(2), 137–148. https://doi.org/10.1177/1460458213509806
Mendeley helps you to discover research relevant for your work.