Objectives: Meloxicam, a selective cyclooxygenase-2 (COX-2) inhibitor, has been demonstrated to exert anti-tumour effects against various malignancies. However, up to now, mechanisms involved in meloxicam anti-hepatocellular carcinoma effects have remained unclear. Materials and methods: Cell viability and apoptosis were assessed by CCK-8 and flow cytometry. Endoplasmic reticulum (ER) stress and autophagy-associated molecules were analysed by western blotting and immunofluorescence assay. GRP78 and Atg5 knock-down by siRNA or chemical inhibition was used to investigate cytotoxic effects of meloxicam treatment on HCC cells. Results: We found that meloxicam led to apoptosis and autophagy in HepG2 and Bel-7402 cells via a mechanism that involved ER stress. Up-regulation of GRP78 signalling pathway from meloxicam-induced ER stress was critical for activation of autophagy. Furthermore, autophagy activation attenuated ER stress-related cell death. Blocking autophagy by 3-methyladenine (3-MA) or Atg5 siRNA knock-down enhanced meloxicam lethality for HCC by activation of ER stress-related apoptosis. In addition, GRP78 seemed to lead to autophagic activation via the AMPK-mTOR signalling pathway. Blocking AMPK with a chemical inhibitor inhibited autophagy suggesting that meloxicam-regulated autophagy requires activation of AMPK. Conclusions: Our results revealed that both ER stress and autophagy were involved in cell death evoked by meloxicam in HCC cells. This inhibition of autophagy to enhance meloxicam lethality, suggests a novel therapeutic strategy against HCC.
CITATION STYLE
Zhong, J., Dong, X., Xiu, P., Wang, F., Liu, J., Wei, H., … Li, J. (2015). Blocking autophagy enhances meloxicam lethality to hepatocellular carcinoma by promotion of endoplasmic reticulum stress. Cell Proliferation, 48(6), 691–704. https://doi.org/10.1111/cpr.12221
Mendeley helps you to discover research relevant for your work.