Microtubule teardrop patterns

12Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Several strategies for controlling microtubule patterns are developed because of the rigidity determined from the molecular structure and the geometrical structure. In contrast to the patterns in co-operation with motor proteins or associated proteins, microtubules have a huge potential for patterns via their intrinsic flexural rigidity. We discover that a microtubule teardrop pattern emerges via self-assembly under hydrodynamic flow from the parallel bundles without motor proteins. In the growth process, the bundles ultimately bend according to the critical bending curvature. Such protein pattern formation utilizing the intrinsic flexural rigidity will provide broad understandings of self-assembly of rigid rods, not only in biomolecules, but also in supramolecules.

Cite

CITATION STYLE

APA

Okeyoshi, K., Kawamura, R., Yoshida, R., & Osada, Y. (2015). Microtubule teardrop patterns. Scientific Reports, 5. https://doi.org/10.1038/srep09581

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free