Prenatal hypoxia and placental oxidative stress: Insights from animal models to clinical evidences

29Citations
Citations of this article
86Readers
Mendeley users who have this article in their library.

Abstract

Hypoxia is a common form of intrauterine stress characterized by exposure to low oxygen concentrations. Gestational hypoxia is associated with the generation of reactive oxygen species. Increase in oxidative stress is responsible for damage to proteins, lipids and DNA with consequent impairment of normal cellular functions. The purpose of this review is to propose a summary of preclinical and clinical evidences designed to outline the correlation between fetal hypoxia and oxidative stress. The results of the studies described show that increases of oxidative stress in the placenta is responsible for changes in fetal development. Specifically, oxidative stress plays a key role in vascular, cardiac and neurological disease and reproductive function dysfunctions. Moreover, the different finding suggests that the prenatal hypoxia-induced oxidative stress is associated with pregnancy complications, responsible for changes in fetal programming. In this way, fetal hypoxia predisposes the offspring to congenital anomalies and chronic diseases in future life. Several antioxidant agents, such as melatonin, erythropoietin, vitamin C, resveratrol and hydrogen, shown potential protective effects in prenatal hypoxia. However, future investigations will be needed to allow the implementation of these antioxidant.

Cite

CITATION STYLE

APA

Silvestro, S., Calcaterra, V., Pelizzo, G., Bramanti, P., & Mazzon, E. (2020, May 1). Prenatal hypoxia and placental oxidative stress: Insights from animal models to clinical evidences. Antioxidants. MDPI. https://doi.org/10.3390/antiox9050414

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free